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Abstract

We consider a linearly elastic composite medium, which consists of a homogeneous matrix containing a
homogeneous and statistically uniform random set of ellipsoidal inclusions. The elastic properties of the matrix and

the inclusions are the same, but the stress-free strains are di�erent. One obtains the estimation of n-degree moments
of stresses averaged over the components. A relation for the statistical stress moments in the matrix in the vicinity
of an individual inclusion is also derived. Furthermore one estimates an in¯uence of the fractional composition of

the inclusions on the inhomogeneous nature of stress moments inside the inclusions. The expression for the
correlation function of stresses is also derived. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In the framework of linear elasticity we consider residual stresses in matrix random structure

composites, which arise due to di�erential or anisotropic eigenstresses (called transformation ®elds) in

the components. These transformation ®elds result from thermal expansion, phase transformation,

twinning and other changes of shape or volume of the material. Knowledge of residual stresses is

important e.g. for strength and fracture analyses, or phase transformation predictions. A considerable

number of methods are known in the linear theory of such composites which yield the e�ective elastic

constants and stress ®eld averages in the components. Appropriate, but by no means exhaustive,

references are provided by the reviews of (Shermergor, 1977; Willis, 1982; Willis, 1983; Kunin, 1983;
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Mura, 1987; Kreher and Pompe, 1989; Buryachenko and Parton, 1992aBuryachenko and Parton, 1992b;
Nemat-Nasser and Hori, 1993). When one tries to estimate the equivalent stress in strength theories as
well as in nonlinear creep theory, or when the yield function in plasticity theory is considered, squares of
the ®rst or second invariants of the deviator of local stresses are frequently used (see for details and
references Buryachenko, 1996). In the extensive recent reviews by Ponte CastanÄ eda (1997) and by
Suquet (1997) rigorous variational methods of analyses on di�erent nonlinear problems are presented.
The exact relations for all components of the second moment tensor of elastic stresses and internal
residual stresses averaged over the volume of the components for anisotropic constituents are obtained
by a perturbation method (see references in Buryachenko and Kreher, 1995; Buryachenko, 1996;
Buryachenko et al., 1996), based on the assumption that functional dependence of the e�ective
compliance and e�ective stored energy on the compliance of the components are known. The known
disadvantages of this method were eliminated by the method of integral equations by Buryachenko and
Rammerstorfer (1997, 1998a). It should be mentioned that an alternative formula for the estimation of
the second moment of stresses was proposed by Ju and his co-workers (see e.g. Ju and Chen, 1994; Ju
and Tseng, 1994Ju and Tseng, 1996); the disadvantages of their approach were discussed in detail by
Buryachenko and Rammerstorfer (1999b).

Especially interesting results are obtained if the ¯uctuation of elastic compliance are negligible
M(x)=const whereas the stress-free strains ¯uctuate. Of course, the ®rst and second moments of
residual stresses in composite components can be estimated with the help of the passage to the zero limit
of the elastic mismatch of di�erent components in the corresponding formulae by Buryachenko and
Kreher (1995). Nevertheless, the desired relationships can be found immediately without some
assumptions of the multiparticle e�ective method (MEFM) proposed by Buryachenko and Kreher
(1995). So Kreher and Pompe (1989), Kreher (1990) obtained the exact simple relations for the ®rst
stress moments inside a component and for the second moment of stresses averaging over the volume of
the composite in which a special case of statistically isotropic materials (no crystallographic texture, no
morphological texture) was considered. Kreher and Molinari (1993) generalized this perturbation
method to take into account both anisotropic crystal orientation distributions and anisotropic
morphology of the microstructure.

In the present paper, a generalization of the method of integral equations by Buryachenko and
Rammerstorfer (1997, 1998a) mentioned above is proposed for the estimation of second moments of
residual stresses in the components of composites containing a statistically homogeneous ®eld of
ellipsoidal uncoated or coated inclusions. Considering both binary and triple interaction of the
inclusions explicit relations for second moments of residual stresses are obtained. Under the additional
assumptions the statistical moments of residual stresses of any order averaged over a separate phase are
presented. The relation for statistical stress moments averaged over the ensemble realization in the
matrix in the vicinity of individual inclusions is proposed as well. One estimates an in¯uence of
fractional inclusion composition on inhomogeneous nature of stress moments inside inclusions. The
derivation of the formulation is expressed in conditional averages of the perturbations which are
generated by the surrounding inclusions.

2. Description of the mechanical properties and geometrical structure of components

This paper discusses a certain representative mesodomain w with a characteristic function W
containing a set X=(vi ) of inclusions vi with characteristic functions Vi (i = 1, 2,...). At ®rst no
restrictions are imposed on the elastic symmetry of the phases or on the geometry of the inclusions. It is
assumed that the inclusions can be grouped into components v (k ) (k = 1, 2,..., N ) with identical
mechanical and geometrical properties. The local strain tensor EE is related to the displacements u via the
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linearized strain±displacement equation EE=[H 
 u+(H 
 u)T]/2. Here 
 denotes tensor product, and (.)T

denotes matrix transposition. The stress tensor ss, satis®es the equilibrium equation (no body forces
acting). Stresses and strains are related to each other via the constitutive equation ss(x)=L(x)EE(x)+aa(x)
or EE(x)=M(x)ss(x)+bb(x). L(x) and M(x)0L(x)ÿ1 are the phase sti�ness and compliance fourth-order
tensors. bb(x) and aa(x) 0 ÿL(x)bb(x) are second order tensors of local eigenstrains and eigenstresses
(frequently called transformation ®elds), respectively, which may arise by thermal expansion, phase
transformation, twinning and other changes of shape or volume of the material; in particular, thermal
strains bb=aTy, where aT is the tensor of linear thermal expansion coe�cients and y=TÿT0 is the
temperature change from the reference value T0 to the current temperature T.

One assumes that the mismatch in the elastic compliance is negligible, i.e. M(x)0M=const., and the
stress-free strains bb ¯uctuate. The transformation ®eld bb is decomposed as bb0bb(0)+bb1(x). bb is assumed
to be constant in the matrix bb(x)=bb(0) for x $ v (0)=w\v (v0[ v (k )0[ vi, k=1, 2,..., N; i=1, 2,...), and
is an inhomogeneous function inside the inclusions: bbb�x��bbb�0� �bbb�k�1 �x� for x $ v (k )Wv. Here and in the
following, the upper index `(k )' refers to the phases, the lower index i refers to the individual inclusions.

We assume that the phases are perfectly bonded, so that the displacements and the traction
components of the stresses are continuous across the interphase boundaries. We take uniform traction
boundary conditions for the mesodomain w: ss0n(x)=T(x), x $ @w, where T(x) is the traction vector at
the external boundary @w, n is its unit outward normal, and where ss0 is a given uniform symmetric
tensor, representing the macroscopic stress state on the domain w.

It is assumed that the representative mesodomain w contains a statistically large number of inclusions
vi W v (k ) (i = 1, 2,...; k = 1, 2,..., N ); all the random quantities under discussion are described by
statistically homogeneous ergodic random ®elds and, hence, the ensemble averaging could be replaced
by volume averaging

h�:�i � �wÿ1
�
�:�W�x�dx

and

h�:�i�k� � � �v�k��ÿ1
�
�:�V �k��x�dx, �2:1�

where aV (k )=aVi0V, k = 1, 2,..., N; i = 1, 2,.... V (k ) is the characteristic functions of v (k ). The bar
appearing above the region represents its measure, e.g. �v � mes v: Therefore, the average over
component v (k ) agrees with the ensemble average over an individual inclusion vi $ v (k ) (i = 1, 2,...):
h(.)ii=h(.)i(k ).

For the description of the random structure of a composite material let us introduce a conditional
probability density j(vi, xi|v1, x1,..., vn, xn), which is a probability density to ®nd the i-th inclusion with
the center xi in the domain vi with ®xed inclusions v1,..., vn with the centers x1,..., xn. The notation j(vi,
xi|; v1, x1,..., vn, xn ) denotes the case xi$x1,..., xn. Of course, j(vi, xi|; v1, x1,..., vn, xn )=0 for values of
xi lying inside the `included volumes' [v0im (m = 1,..., n ), where v0im � vm with characteristic functions
V0m (since inclusions cannot overlap), and j(vi, xi|; v1, x1,..., vn, xn ) 4 j(vi, xi ) at |xiÿxm| 41, m =
1,..., n (since no long-range order is assumed). j(vi, x) is a number density n (k )=n (k )(x) of component
v (k ) % vi at the point x and c (k )=c (k )(x) is the concentration, i.e. volume fraction, of the component v (k )

in the point x: c�k��x� � hV �k�i�x� � �vin
�k��x� (k = 1,2,..., N; i = 1,2,...), c (0)(x)=1ÿhVi(x). If the pair

distribution function g(xiÿxm )0j(vi, xi|; vm, xm )/n (k ) depends only on |xmÿxi|, it is called the radial
distribution function. Hereinafter the notations h(.)i(x) and h(.)|v1, x1;...; vn, xni(x) will be used for the
average and for the conditional average taken for the ensemble of a statistically inhomogeneous ®eld
X=(vi ) at the point x, on the condition that there are inclusions at the points x1,..., xn and x1$xn for
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any n. The notation h(.)|; v1, x1;...; vn, xni(y) is used for the case y ( v1,..., vn. The notation for the
conditional probability density j(vi, xi|; v1, x1,..., vn, xn; x0) is considered under the condition that the
inclusions v1,..., vn are located in the points x1,..., xn, whereas x0 is the matrix position vector.

3. Average stresses in the components and stored energy

3.1. General relations

It is known that a general integral representation for stresses (see, e.g. Buryachenko and Kreher,
1995)

sss�x� � sss0 �
�
G�xÿ y��bbb1�y� ÿ hbbb1i�dy, �3:1�

where the integral operator kernel GG(xÿy)0ÿL(0)[Id(xÿy)+HHG(xÿy)L(0)], is de®ned by the in®nite-
homogeneous-body Green's function G of the LameÂ equation of a homogeneous medium with elastic
modulus tensor L(0), I is the unit fourth-order tensor.

Let us consider an arbitrary ®xed inclusion vi, then for x $ vi from Eq. (3.1), we obtain the relation for
the stresses in the inclusion v1

sss�x� � Åsssi�x� ÿQi�x, bbb1�, �3:2�
which is the superposition of the disturbance ÿQi(x, bb1) caused by the transformation ®eld in the
inclusion considered and the e�ective ®eld Åsssi�x� produced by the external loading ss0 and by the
surrounding inhomogeneities:

Qi�x, bbb1� � ÿ
�
GGG�xÿ y�bbb1�y�Vi�y�dy, x 2 vi �3:3�

and

Åsssi�x� � sss0 �
�
GGG�xÿ y��bbb1�y��V�y� ÿ Vi�y�� ÿ hbbb1i

�
dy: �3:4�

In the case where a single inclusion viW v (k ) is an ellipsoid, then according to the Eshelby theorem,
the tensor Qi(x, bb1) has the following properties

Qi�x, bbb1� � Qibbb
�k�1 , if bbb1�x� � bbb�k�1 � const: �3:5�

and

hQi�x, bbb1�ii � Qihbbb1ii, �3:6�
where the tensor Qi is associated with the well-known Eshelby tensor Si=S(vi ) by Si=IÿMQi. Since
bbb�k�1 �x� can vanish at the part of the ellipsoidal inclusion x $ viW v (k ), then an arbitrary nonellipsoidal
inclusion vi can be included into some ®ctitious ellipsoidal inclusion, and Eq. (3.6) is valid. In the
general case for the inclusion vi the tensor Qi(x, bb1) can be found by numerical methods. For particular
cases of coated ellipsoidal inclusions, di�erent analytical models are known (see for references, e.g.
Buryachenko and Rammerstorfer, 1996b, 1999a). Averaging Eqs. (3.2) and (3.4) over a random
realization of surrounding inclusions, vq$vi gives
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hsssii�x� � sss0 ÿQi�x, bbb1� �
��

Tq�xÿ xq, bbb1� �vqj�vq, xqj; vi, xi � ÿ GGG�xÿ xq�hbbb1i
�
dxq, �3:7�

whence, for ellipsoidal inclusion x $ vi, it follows that the relation for average stresses in the inclusion vi
is

hsssii � sss0 ÿQihbbb1ii �
��

Tiq�xi ÿ xq, bbb1� �vqj�vq, xqj; vi, xi � ÿ Ti�xi ÿ xq�hbbb1i
�
dxq, �3:8�

hereafter, under x ( vq, vi$vq

Tq�xÿ xq, bbb1� � �vÿ1q

�
GGG�xÿ y�Vq�y�bbb1�y�dy, �3:9�

Tiq�xi ÿ xq, bbb1� �
ÿ
�vi �vq

�ÿ1 � GGG�xÿ y�Vi�xi �Vq�y�bbb1�y�dx dy, �3:10�

Ti�xi ÿ y� � �vÿ1i

�
GGG�xÿ y�Vi�x�dx �3:11�

and

Tiq�xi ÿ xq� �
ÿ
�vi �vq

�ÿ1 � GGG�xÿ y�Vi�xi �Vq�y�dx dy: �3:12�

In Eq. (3.8), hssii (x) stands for average stresses in x $ vi over the ensemble realization of surrounding
inclusions. Generally speaking, hssii (x) depends on the position x (contrary to hssii ) inside a particular
grain or on the orientation of the inclusion itself. Obviously for homogeneous inclusions (i.e. bbb1�x� �
bbb�k�1 �const:, x $ vqWv (k ), k=1,..., N), Tq (xÿxq, bb1)=Tq (xÿxq )bb(k ) and Tiq (xiÿxq, bb1)=Tiq (xiÿxq )bb(k ).
For an isotropic matrix and spherical inclusions, the tensors Tq (xÿxq ) and Tiq (xiÿxq ) are known (see,
e.g Buryachenko and Rammerstorfer, 1997).

The relation for the stored energy U�0ÿhbb1ssi/2 (for ss000) follows from Eq. (3.8):

U� � ÿ1
2

XN
i�1

�
c�i �hQi�x, bbb1�ii �

� �
Vi�x�bbb1�x�

�
Tq�xÿ xq, bbb1� �vqj�vq, xqj; v, xi �

ÿ GGG�xÿ xq�hbbb1i
�
xq dx

�
:

�3:13�

Eqs. (3.7) and (3.13) are new.

3.2. Some particular cases

Eqs. (3.8) and (3.13) may be signi®cantly simpli®ed under the assumption

hVq�y�bbb�q�1 �y�j; vi, xii � f1

�
hbbb�q�1 i,r

�
, �3:14�

where r � jaÿ1i �xq ÿ xi �j: Here the dependence of function f1 from the geometrical parameters of
inclusion vi is de®ned by scalar values r; aÿ1i identi®es a matrix of an a�ne transformation which
transforms the ellipsoid vi into the unit sphere. According to Eq. (3.14), the conditional averaging
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properties of the composite have level surfaces which are obtained from the ellipsoidal surfaces by the
use of homothetic transformation. Eq. (3.14) holds for some models of composites. In particular, one
may consider the grain structure where the correlation of homogeneous transformations bb(i )(x)0const.
(x $ v (i )) between di�erent grains is lacking (Kreher and Molinari, 1993). Then Eq. (3.14) is valid under
the simplest probability density j(vq, xq|; vi, xi)=f2(r ) which is realized for statistical isotropy of a
composite structure with spherical inclusions (see Kreher, 1990).

By virtue of the fact that the generalized function, GG(x) is an even homogeneous function of order ÿ3,
we have a relation�

�T�xÿ xq, bbb1� �vqj�vq, xqj; vi, xi � ÿ GGG�xÿ xq�hbbb1i�dxq � Qihbbb1i �3:15�

under the assumption Eq. (3.14). Then Eq. (3.7) can be combined into a simple equation

hsssii�x� � sss0 �Qihbbb1i ÿQi�x, bbb1�: �3:16�
In so doing for the homogeneous ellipsoidal inclusion vi, the statistical average stress hssii (x) does not

depend on the position x inside the inclusion being analyzed

hsssii�x� � sss0 �Qi

h
hbbb1i ÿ bbb�i �1

i
, if bbb1�x� � const:, x 2 vi: �3:17�

In a similar manner, the relation for the stored energy Eq. (3.13) may be simpli®ed as well

U� � 1

2

XN
i�1

c�i ��hbbb1�x�Qi�x, bbb1�ii ÿ hbbb1iiQihbbb1i�: �3:18�

For homogeneous inclusions, Eq. (3.18) admits of further simpli®cation

U� � 1

2

XN
i�1

c�i �bbb�i �1 Qi

h
bbb�i �1 ÿ hbbb1i

i
: �3:19�

Under an additional assumption Eq. (3.14), Eq. (3.19) may be simpli®ed

U� � 1

2
h�bbbÿ hbbbi�Q�bbbÿ hbbbi�i: �3:20�

It should be noted that Eqs. (3.17) and (3.20) for statistically homogeneous and isotropic composites
reduce to the results obtained by Kreher (1990). Eq. (3.20) was obtained by Kreher and Molinari (1993)
by another less formal method. Kreher (1990) obtained the exact estimation for the second moment of
stresses averaged over the whole volume of the composite by the use of a perturbation method

hsss
 sssi � ÿ2@U
�

@M

����
bbb
, �3:21�

as well as for the second moment of stresses averaged over the component being analyzed (see also,
Buryachenko and Kreher, 1995)

hsss
 sssii � ÿ
2

c�i �
@U�

@M�i �

����
bbb
, �3:22�

where the partial derivative is calculated under a ®xed value of stress-free strain bb(x), x $ w, and the
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derivative in Eq. (3.22) should be estimated for elastically inhomogeneous medium with the successive
passage to the zero limit of the compliance mismatch M

�i �
1 40: Unfortunately, the estimation of the

second moment of stresses inside components Eq. (3.22) is less simple and requires a consideration of
multiparticle interactions of inclusions.

3.3. The conditional average of the stresses inside the components

Let hss|v1, x1; v2, x2i(x) denote conditional average stresses over an ensemble realization in the point x
$ v1 under the condition that there are ®xed inclusions v1$v2 in the points x1 and x2. This average can
be found by the use of the general equation Eq. (3.1) (x $ v1$v2)

sss�xjv1, x1; v2, x2� � sss0 �
�
GGG�xÿ y��bbb1�y�V�yjv1, x1; v2, x2� ÿ hbbb1i

�
dy, �3:23�

where V(y|v1, x1; v2, x2) is a random characteristic function of inclusions y under the condition that the
inclusions v1$v2 are located in the domains with the centers x1 and x2. The terms with x $ v1 and y $ v2
may be isolated in the right-hand-side integral of Eq. (3.23) with the help of the equality V(y|v1, x1; v2,
x2)=V1(y)+V2(y)+V(y|; v1, x1; v2, x2) or in terms of the conditional probability density

j�vq, xqjv1, x1; v2, x2� � d�xq ÿ x1� � d�xq ÿ x2� � j�vq, xqj; v1, x1; v2, x2�: �3:24�
Then one averages Eq. (3.23) by the use of Eq. (3.24), (x $ v1)

hsssjv1, x1; v1, x2i1�x� � sss0 ÿQ1�x, bbb1� � T2�x, bbb1� �
��

Tq�xÿ xq, bbb1� �vqj�vq, xqj; v1, x1; v2, x2�

ÿ GGG�xÿ xq�hbbb1i
�
dxq:

�3:25�

Taking the relation for average stresses Eq. (3.7) into account, it is possible to rewrite Eq. (3.25) in
the form

hsssjv1, x1; v2, x2i�x� � hsssi1�x� � T2�x, bbb1� �
�

Tq�xÿ xq, bbb1� �vq
�
j�vq, xqj; v1, x1; v2, x2�

ÿ j�vq, xqj; v1, x1�
�
dy,

�3:26�

where x $ v1. Proper allowance must be made for calculation of the integral in Eq. (3.26) that the triple
conditional probability density j(vq, xq|; v1, x1; v2, x2) is unknown. Note that for |x1ÿx2| 4 1, the
assumption��

Tq�xÿ xq, bbb1� �vqj�vq, xqj; v1, x1; v2, x2� ÿ GGG�xÿ xq�hbbb1i
�
dxq

�
��

Tq�xÿ xq, bbb1� �vqj�vq, xqj; v1, x1� ÿ GGG�xÿ xq�hbbb1i
�
dxq

�3:27�

is equivalent to the acceptability of neglegeble interaction of inclusions. One of the uses of Eq. (3.27)
with the assumption Eq. (3.14) leads Eq. (3.26) to a simple representation (x $ v1) hss|v1, x1; v2,
x2i(x)=hssi1+T2(x, bb1). In such manner, the conditional average stresses hss(x)|v1, x1; v2, x2i(x) (x $ vi )
is de®ned by average stresses hssi1(x), Eq. (3.16) and the perturbation T2(x, bb1) caused by the inclusion
v2. In a similar manner, the n-point conditional average of stresses in the inclusions hss|v1, x1; v1, x2;...;
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vn, xni1(x) (x $ v1) may be derived under known (nÿ 1)-point conditional average ones

hsssjv1, x1; v2, x2; . . . ; vn, xni�x� � hsssjv1, x1; v2, x2; . . . ; vnÿ1, xnÿ1i�x� � Tn�x, bbb1�

�
�

Tq�xÿ xq, bbb1� �vq�j�vq, xqj; v1, x1; . . . ; vn, xn� ÿ j�vq, xqj; v1, x1; . . . ; vnÿ1, xnÿ1��dxq:
�3:28�

The right-hand-side integrals in Eqs. (3.26) and (3.28) are of the ®rst order of the inclusion
concentration c. Therefore, for dilute concentration of inclusions, their summations are small when
compared with Tn (x, bb1) (n=2,...).

4. The second moment of stresses inside the components

4.1. Stress ¯uctuations inside the inclusions

To obtain the second moment of stresses in the component v (i ) of the inclusions (i = 1, 2,....), it is
necessary to take the tensor product of Eq. 3.1 into ss(x), x $ vi

sss�x� 
 sss�x� � sss0 
 sss0 � sss0 

�
GGG�xÿ z��bbb1�z�Vq�z� ÿ hbbb1i�dz�

�
GGG�xÿ y��bbb1�y�Vp�y�

ÿ hbbb1i�dy
 sss0 �
� �

GGG�xÿ y��bbb1�y�Vp�y� ÿ hbbb1i� 
 G�xÿ z��bbb1�z�Vq�z� ÿ hbbb1i�dy dz:

�4:1�

The right-hand-side of Eq. (4.1) is a random function of arrangements of surrounding inclusions vp, vq
( p, q=1,2,...). One averages Eq. (4.1) over realization ensemble

hsss
 sssii�x� � sss0 
 sss0 � sss0

�
�Tq�xÿ xq, bbb1�j�vq, xqjvi, xi � ÿ GGG�xÿ xq�hbbb1i�dxq

�
�
�Tp�xÿ xp, bbb1�j�vp, xpjvi, xi � ÿ GGG�xÿ xp�hbbb1i�dxp �

� ��
Tp�xÿ xp, bbb1� 
 Tq�xÿ xq, bbb1�

� j�vp, xp,vq, xqjvi, xi � ÿ Tp�xÿ xp, bbb1� 
 GGG�xÿ xq�hbbb1ij�vp, xpttjvi, xi � ÿ �GGG�xÿ xp�hbbb1i�


 Tq�xÿ xq, bbb1�j�vq, xqjvi, xi � � �GGG�xÿ xp�hbbb1i� 
 �GGG�xÿ xq�hbbb1i�
	
dxp dxq:

�4:2�

The right-hand-side of Eq. (4.2) includes one-point and double point conditional probability densities,
in which the terms with xp=xi, xq=xi and xp=xq may be isolated with the help of the equalities

j�vp, xpjv1, xi � � d�xp ÿ xi � � j�vp, xpj; vi, xi �,

j�vq, xqvi, xi � � d�xq ÿ xi � � j�vq, xqj; vi, xi �,
and

j�vp, xp,vq, xqjvi, xi � � d�xp ÿ xq�d�xq ÿ xi � � d�xp ÿ xq�j�vp, xpj; vi, xi � � d�xp ÿ xi �j�vq, xqj;

vi, xi � � d�xq ÿ xi �j�vp, xpj; vi, xi � � j�vp, xpj; vi, xi �j�vq, xqj; vp, xp; vi, xi �:
�4:3�

Then Eq. (4.2) may be rewritten as (x $ vi )
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hsss
 sssii�x� � ÿsss0 
 sss0 � sss0 
 hsssii�x� � hsssii�x� 
 sss0 ÿQi�x, bbb1� 
Qi�x, bbb1� ÿQi�x, bbb1�


 �hsssii�x� ÿ sss0� ÿ �hsssii�x� ÿ sss0� 
Qi�x, bbb1� �
�

Tp�xÿ xp, bbb1� �vp 
 Tp�xÿ xp, bbb1�

� �vpj�vp, xpj; vi, xi �dxp �
� ��

Tp�xÿ xp, bbb1� �vp 
 Tq�xÿ xq, bbb1� �vqj�vp, xpj; vi, xi �

� j�vq, xqj; vp, xp; vi, xi � ÿ �GGG�xÿ xp�hbbb1i� 
 Tq�xÿ xq, bbb1� �vqj�vq, xqj; vi, xi �

ÿ �Tp�xÿ xp, bbb1� �vpj�vp, xpj; vi, xi � ÿ GGG�xÿ xp�hbbb1i� 
 GGG�xÿ xq�hbbb1i
	
dxp dxq:

�4:4�

As this takes place, the last two items in the double right-hand-side integral can be expressed in terms
of averaging stresses Eq. (3.7). Then, Eq. (4.4) may be simpli®ed to

hsss
 sssii�x� � hsssii�x� 
 hsssii�x� �
�

Tp�xÿ xp, bbb1� �vp 
 Tp�xÿ xp, bbb1� �vpj�vp, xpj; vi, xi �dxp

�
� �

Tp�xÿ xp, bbb1� �vp 
 Tq�xÿ xq, bbb1� �vqj�vp, xpj; vi, xi ��j�vq, xqj; vp, xp; vi, xi �

ÿ j�vq, xqj; vi, xi ��dxq dxp:

�4:5�

The new exact relation Eq. (4.5) is derived by the use of triple interaction of the inclusions. As may
be seen from Eq. (4.5), neglect of binary interaction is tantamount to the assuming of homogeneity of
stresses inside component vi

hsss
 sssii�x� � hsssii�x� 
 hsssii�x�: �4:6�
The following approximation of second moment estimation can be obtained by taking into account

only the binary interactions of inclusions

hsss
 sssii�x� � hsssii�x� 
 hsssii�x� �
�

Tp�xÿ xp, bbb1� �vp 
 Tp�xÿ xp, bbb1� �vpj�vp, xpj; vi, xi �dx: �4:7�

In Section 7, it will be shown that Eq. (4.7) provides a su�ciently good approximation of the exact
solution. One can see from Eq. (4.7) that the covariance matrix

Dsss2
i �x� � hsss
 sssii�x� ÿ hsssii�x� 
 hsssii�x� �4:8�

presents a determined nonhomogeneous function of coordinate x inside inclusion vi, in contrast to
hssii(x)=const. Eq. (4.8) makes possible the estimation of average ¯uctuations over the inclusion volume

hDsss2ii � �vÿ1i

�
Dsss2

i �x�Vi�x�dx: �4:9�

It is signi®cant that in deriving Eq. (4.5), we did not use hypothesis H1 of the so-called MEFM (see
Buryachenko and Kreher, 1995 for details):

Åsssi�x� � const:, x 2 vi: �4:10�
Employing this hypothesis, we obtain a uniform second stress moment inside the inclusion vi
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Dsss2EFM
i �

��
Tip�xi ÿ xp, bbb1� �vp 
 Tip�xi ÿ xp, bbb1� �vp

�
j�vp, xpj; vi, xi �dxp �

� ��
Tip�xi ÿ xp, bbb1�

� �vp 
 Tiq�xi ÿ xq, bbb1� �vq
� � j�vp, xpj; vi, xi ��j�vq, xqj; vp, xp; vi, xi �

ÿ j�vq, xqj; vi, xi ��dxp dxq:

�4:11�

In view of problem nonlinearity, hDsss2ii 6�Dsss2EFM
i : For homogeneous ellipsoidal inclusions, neglecting

the second integral in the right-hand-side of Eq. (4.11) reduces Eq. (4.11) to the relation proposed by
Buryachenko and Rammerstorfer (1996a) without any justi®cation.

4.2. Conditional second moments of stresses inside the inclusions

The previous method of the estimation of stress second moment can be used for the calculation of
conditional moments of stresses. But it is more convenient to directly employ a conditional average Eq.
(3.28) for this purpose. At ®rst, we have from general equation Eq. (3.1) for ®xed inclusions, vi$vj (x $
vi )

sss�x� 
 sss�x� �
�
sss0 ÿQi�x, bbb1� � Tj�xÿ xj, bbb1� �vj �

�
GGG�xÿ y��bbb1�y�V�yj; vi, xi; vj, xj �

ÿ hbbb1i�dy

�

 sss�x�:

�4:12�

Taking conditional averaging of Eq. (4.12), we obtain (x $ vi$vj )

hsss
 sssjvi, xi; vj, xji�x� �
�
sss0 ÿQi�x, bbb1� � Tj�xÿ xj, bbb1� �vj

�
 hsssjvi, xi; vj, xji�x�

�
��

Tp�xÿ xp, bbb1� �vp 
 hsssjvi, xi; vj, xj; vp, xpi�x�j�vp, xpj; vi, xi; vj, xj �

ÿ �GGG�xÿ xp�hbbb1i� 
 hsssjvi, xi; vj, xji�x�
	
dxp:

�4:13�

Transforming Eq. (4.13) by the use of Eqs. (3.26) and (3.28), in which n=3, leads to

hsss
 sssjvi, xi; vj, xji�x� � hsssjvi, xi; vj, xji�x� 
 hsssjvi, xi; vj, xji�x� �
�

Tp�xÿ xp, bbb1� �vp


 Tp�xÿ xp, bbb1� �vpj�vp, xpj; vi, xi; vj, xj �dxp �
� �

Tp�xÿ xp, bbb1� �vp 
 Tq�xÿ xq, bbb1�

� �vqj�vp, xpj; vi, xi; vj, xj � � �j�vq, xqj; vp, xp; vi, xi; vj, xj � ÿ j�vq, xqj; vi, xi; vj, xj ��dxq dxp:

�4:14�

4.3. Stress ¯uctuations inside the matrix

In a similar spirit, it is possible to obtain the estimation of the second stress moment averaging over a
volume of the matrix. If the foregoing reasonings are repeated, we obtain
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hsss

sssi0 � hsssi0 
 hsssi0 �
�

Tp�x0 ÿ xp, bbb1� �vp 
 Tp�x0 ÿ xp, bbb1� �vpj�vp, xpj; v0, x0�dxp

�
� �

Tp�x0 ÿ xp, bbb1� �vp 
 Tq�x0 ÿ xq, bbb1� �vq � j�vp, xpj; v0, x0��j�vq, xqj; vp, xp; v0, x0�

ÿ j�vq, xqj; v0, x0��dxp dxq:

�4:15�

The second stress moment inside Eq. (4.15) does not depend on x0 $ v0 in contrast to Eq. (4.5).
An approximate estimation of the second moment hss 
 ssi0 and the conditional one hss 
 ss|; vi, xii0

can be obtained in perfect analogy to Eqs. (4.7) and (4.14) by the use of the replacement of values vi, xi
and x by v0, x0 and x0.

4.4. Stress second moment in composite

The resultant evaluations of stress moments in individual components (Eqs. (4.5) and (4.15)) enable
one to estimate the average over the whole of volume of composite. For example, we can obtain an
estimation of the second stress moment in the composite from Eqs. (4.5) and (4.15)

hsss
 sssi �
XN
j�0

c� j �hsssij 
 hsssij �
XN
i�1

n�i �
� �
�Tp�xÿ xp, bbb1� �vp 
 Tp�xÿ xp, bbb1� �vpj�vp, xpj; vi,

xi �Vi�x�dxp dx�
XN
i�1

n�i �
� � �

Tp�xÿ xp, bbb1� �vp 
 Tq�xÿ xq, bbb1� �vqj�vp, xpj; vi, xi �

� �j�vq, xqj; vp, xp; vi, xi � ÿ j�vq, xqj; vi, xi ��Vi�x�dxq dxp dx� c�0�
�

Tp�x0 ÿ xp, bbb1� �vp�


 Tp�x0 ÿ xp, bbb1� �vpj�vp, xpj; v0, x0�dxp � c�0�
� �

Tp�x0 ÿ xp, bbb1� �vp 
 Tq�x0 ÿ xq, bbb1�

� �vq � j�vp, xpj; v0, x0��j�vq, xqj; vp, xp; v0, x0� ÿ j�vq, xqj; v0, x0��dxq dxp:

�4:16�

Therefore, the exact estimation of hss
 ssi in Eqs. (3.20) and (3.21) o�ers a test of the accuracy of Eq.
(4.16), which uses dissimilar approximate conditional probability densities. It should be noted, in
connection with this, that the second stress moment in the composite, hss
 ssi, can be represented in the
form

hsss
 sssi �
XN
j�0

cjhsssij 
 hsssij � �Dsss2, �4:17�

where the ®rst term in the right-hand-side of Eq. (4.17) is de®ned by the average stresses inside the
components and the second one, �Dsss2, depends on the stress ¯uctuation inside each component; because
hssi0ss0, the second moment of stresses Eq. (4.17) is, in fact, the stress ¯uctuations in the composite hss

 ssi0Dss2 at ss0=0. By virtue of the fact that the average stresses in the components are calculated
exactly by Eq. (3.16), the di�erence,

�Dsss2 � hsss
 sssi ÿ
XN
j�0

cjhsssij 
 hsssij, �4:18�
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can be used for the estimation of the accuracy of calculated stress ¯uctuations inside the components
(Eqs. (4.5) and (4.15)).

It is pertinent to note that in a number of example cases, simpli®ed methods (like Mori±Tanaka±
Eshelby) permit one to obtain a reasonable accuracy for the e�ective parameters, M�, bb� and U�. But,
for the estimation of central stress moments inside component inclusions, one obtains a trivial result,
Dsss2

i �x� � 0, x $ v (i ) (i=0, 1,...).

5. Statistical moments of stresses of arbitrary degree

5.1. Stress moments inside components

The estimation method of second stress moments (Eqs. (4.5) and (4.15)) and the conditional one Eq.
(4.14) can be extended to the evaluation of stress moments of any degree. Namely, we take the tensor
product of n-degree, according to the general formula (3.1) (x $ vi )

sss�x��
sss�x��nÿ1 � sss0�
sss�x��nÿ1 ÿQi�x, bbb1��
sss�x��nÿ1 �
�
�G�xÿ y��bbb1�y�V�yj; vi, xi �

ÿ hbbb1i
��
 sss�x��nÿ1dx,

�5:1�

where ss(
ss)n ÿ 10ss
... 
ss. Taking the average of Eq. (5.1) over the ensemble realization and making
use of Eq. (3.7) relating the mean stress ®eld to the disturbance caused by the surrounding inclusions
gives

hsss�
sss�nÿ1ii�x� � hsssii�x�h�
sss�nÿ1ii�x� �
�

Tp�xÿ xp, bbb1� �vpj�vp, xpj; v, xi �

�
h
h�
sss�nÿ1jvi, xi; vp, xii�x� ÿ h�
sss�nÿ1ii�x�

i
dxp:

�5:2�

Thus, the estimation problem of the one-point stress moment of order n is reduced to constructing the
stress moment and conditional one of order n ÿ 1. For evaluation of stress moments inside the matrix
hss(
ss)n ÿ 1i0(x0), (x0 $ v 0), it is necessary to replace in Eq. (5.2) the values vi, xi and x by v0, x0 and x0;
in so doing, the stress moments, hss(
ss)n ÿ 1i0(x0) do not depend on the location of x0 inside the matrix.

To obtain the conditional stress moment of order n under the condition that the inclusion vi$ vj is
®xed, let us take a tensor product of values of the ®eld ss(x|vi, xi; vj, xj ) Eq. (3.23) over the stress
moment (
ss)n ÿ 1 and average the result, taking Eq. (3.26) into account. Then at x $ vi, we obtain

hsss�
sss�nÿ1jvi, xi; vj, xjii�x� � hsssjvi, xi; vj, xjii�x�h�
sss�nÿ1jvi, xi; vj, xji�x� �
�

Tp�xÿ xp, bbb1�

� �vpj�vp, xpj; vi,xi; vj, xj �
h
h�
sss�nÿ1jvi, xi; vp, xp; vj, xjii�x� ÿ h�
sss�nÿ1jvi, xi; vj, xjii�x�

i
dxp:

�5:3�

Let us show the calculation hss(
ss)n ÿ 1ii (x), (x $ vi ) as an example of the estimation of stress
moments of the third order. In line with Eq. (5.2), we have
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hsss
 sss
 sssii�x� � hsssii�x� 
 hsss
 sssii�x� �
�
�Tp�xÿ xp, bbb1� �vpj�vp, xpj; vi, xi �

� �hsss
 sssjvi, xi; vp, xpi�x� ÿ hsss
 sssii�x��dxp,

�5:4�

According to Eqs. (4.5) and (4.14), the moments hss 
 ssii (x) and hss 
 ss|vi, xi; vp, xpi(x), (x $ vi$vp )
in the right-hand-side integral of Eq. (5.4), can be expressed in terms of stress-free strains bb(x). Then,
Eq. (5.4) can be rewritten in the index form, in view of Eqs. (3.7), (3.26), (4.5) and (4.14)

hskslsmii�x� � hskii�x�hslii�x�hsmii�x� � Ds2ikl�x�hsmii�x� � Ds2ikm�x�hslii�x� � Dsss2
ilm�x�hskii�x�

� Ds3iklm�x�, �5:5�

where the Voigt notations have been used (k, l, m = 1,..., 6; i = 1, 2,...), and the tensor Dsss3
i �x� is

determined by a triple correlation function of stresses

Dsss3
i �x� �

�
Tp�xÿ xp, bbb1� �vp 
 Tp�xÿ xp, bbb1� �vp 
 Tp�xÿ xp, bbb1� �vpj�vp, xpj; vi, xi �dxp

�
�

Tp�xÿ xp, bbb1� �vpj�vp, xp; vi, xi � 

�

Tp�xÿ xp�bbb� p�1 �vp 

�

Tq�xÿ xq, bbb1� �vq

� �j�vq, xqj; vp, xp; vi, xi � ÿ j�vq, xqj; vi, xi �
�
dxq �

�
Tq�xÿ xq, bbb1� �vq

�
j�vq, xqj; vp, xp; vi, xi �

ÿ j�vq, xqj; vi, xi �
�
dxq 
 Tp�xÿ xp, bbb1� �vp ÿ

�
Tq�xÿ xq, bbb1� �vq 
 Tq�xÿ xq, bbb1� �vq

� j�vq, xqj; vi, xi �dxq ÿ
� �

Tq�xÿ xq, bbb1� �vq 
 Tr�xÿ xr, bbb1� �vrj�vq, xqj; vi, xi �

� �j�vq, xqj; vr, xr,vi, xi � ÿ j�vq, xqj; vi, xi �
�
dxq dxr �

�
Tq�xÿ xq, bbb1� �vq�j�vq, xqj; vp, xp; vi, xi �

ÿ j�vq, xqj; vi, xi ��dxq 

�

Tq�xÿ xq, bbb1� �vq
�
j�vq, xqj; vp, xp; vi, xi � ÿ j�vq, xqj; vi, xi �

�
dxq

�
dxp:

�5:6�

In such a manner, the problem is reduced to calculating the multiple integrals on the right-hand-side
of Eq. (5.6). These integrals have the di�erent orders with respect to c under the dilute concentration of
inclusions c. Taking into account only the principal part of the expansion Eq. (5.6), which is of the ®rst
order over c, we can write

Dsss3
i �x� �

�
Tp�xÿ xp, bbb1� �vp 
 Tp�xÿ xp, bbb1� �vp 
 Tp�xÿ xp, bbb1� �vpj�vp, xpj; vi, xi �dxp: �5:7�

The omitted terms in Eq. (5.6) are of the second and third order in c.
It is interesting to consider a distribution law of real stresses di�erent from the Gaussian distribution

inside the inclusions. For this purpose some familiar relations are represented in Appendix A. One
denotes the di�erence of the moments of the real random variable, he
... 
ei and its Gaussian
approximation, heG
... 
eGi Eq. (A1) by

DGhe
 . . .
 ei � he
 . . .
 ei ÿ heG 
 . . .
 eGi, �5:8�
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where the Gaussian approximation eG has a probability density (Eq. (A1); see Appendix A) obtained by
the use of the ®rst and second statistical moments of the random variable e. Then the comparison of
Eqs. (A2) and (5.5) shows that

DGhsss
 sss
 sssii�x� � Dsss3
i �x�: �5:9�

It can be shown that a correction of n-order to hssG(
ssG)n ÿ 1ii (x) has the following linear principal
part with respect to c under dilute c (x $ vi; i=0, 1,...; n=3, 4,...)

Dsssni�x� � hsss�
sss�nÿ1ii�x� ÿ hsssG�
sssG�nÿ1ii�x� �
�

Tp�xÿ xp, bbb1� �vp
�
 Tp�xÿ xp, bbb1�

� �vp
�nÿ1j�vp, xpj; vi, xi �dxp:

�5:10�

It should be noted that for the two component composites with isotropic homogeneous inclusions,
bb1(x)0b10(x )dd, dd0dkl and for the step binary probability density,

j�vp, xpj; vi, xi � �
h
1ÿ V 0

ip�xp�
i
n� p� �5:11�

the normalized values of Dsssn
i �x� for n=2 (Eqs. (4.7) and (4.8)) and n=3, 4,...:

Dsssn NORM
i �x� � �Dsssn

i �x�
�ÿ

cbn10
��1=n �5:12�

are invariants with respect to the transformation ®elds bb(x) and a given inclusion concentration.

5.2. Statistical moments of stresses inside the matrix in the vicinity of inclusions

We obtained the expressions of stress moments of arbitrary degree averaging over the volume of the
matrix. But local characteristics of stress ®eld are of prime interest in applications. Let us analyze the
distribution of stresses in the matrix in the vicinity of an inclusion boundary with (see e.g Buryachenko
and Kreher, 1995)

sssÿi �n� � sss�i �x� ÿ GGG�n�bbb�i �1 , �5:13�
where sssÿi �n� and sss�i �x� are the random limiting stress outside and inside, respectively, near the inclusion
boundary @vi: sssÿi �n� � lim sss�y�, ss+(x)=lim ss(z), y 4 x, z 4 x, y $ v (0), z $ vi, x $ @vi; n is the unit
outward normal vector on @vi; the tensor GG(n) is represented, e.g in Buryachenko and Kreher (1995).
From Eq. (5.13), we notice that the average stress over ensemble realization in the matrix in the vicinity
of the inclusion are generated from hssii (x) by parallel translation to the vector GGG�n�bbb�i �1 , which does not
depend on the form and concentration of inclusions. Then we obtain a relation for any moments of
stresses ssÿ(n) (m=1, 2,...)

hsssÿ�n��
sssÿ�n��mÿ1ix �
Xm
k�0

C k
mhsss�
sss�kÿ1ii�x�

�


�
ÿ GGG�n�bbb�i �1�x�

�	mÿk
, �5:14�

where C k
m � �

k
m
� are the binomial coe�cients, and the values hss(
ss)k ÿ 1ii (x) (k = 1,2,..., m ) are

de®ned by Eqs. (4.5) and (5.10); in Eq. (5.14), it is necessary to take into account that hss(
ss)ÿ1ii (x)0
1.
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6. Correlation function of stresses

A conceptual sketch of a calculation of n-point moment of the stress ®eld

hsss�x1� 
 . . .
 sss�xn�jv1, x1; . . . ; vn, xn; vn�1, xn�1; . . . ; vm, xmi,
has been proposed by Buryachenko (1987a, 1987b) by the use of MEFM. This problem can be
simpli®ed for homogeneous elastic materials with heterogeneous stress free strains, because, in this case,
the e�ective ®eld, Åsss�x�, x $ v Eq. (3.4), does not depend on the transformation ®eld, bbb�i �1 �x�, inside the
inclusion. Now we turn our attention to the estimation of 2-point second moment of stresses hss(x) 

ss(y)|vi, xi; vj, yji (x $ vi, y $ vj, vi$ vj ). For this purpose, we take the tensor product of values of the
stress Eq. (3.3) at di�erent points x $ vi and y $ vj

sss�x� 
 sss�y� �
�
sss0 ÿQi�x, bbb1� � Tj�xÿ xj, bbb1� �vj �

�
G�xÿ xp��bbb� p�1 V�xpj; vi, xi; vj, xj �

ÿ hbbb1i�dxp

�

 sss�y�:

�6:1�

Then, if one averages Eq. (6.1) over the ensemble realization under the ®xed inclusions vi and vj, one
obtains (x $ vi$vj, y $ vj )

hsss�x� 
 sss�y�jvi, xi; vj, xji �
h
ÿQibbb

�i �
1 � Tj�xÿ xj, bbb1� �vj

i

 hsssjvj, xj; vi, xii�y�

�
�
�Tp�xÿ xp�bbb� p�1 vphsssjvj, xj; vi, xi; vp, xpi�y�j�vp, xpj; vi, xi; vj, xj �

ÿ G�xÿ xp�hbbb1ihsssjvj, xj; vi, xii�y��dxp:

�6:2�

We transform (6.2) by the use of Eqs. (3.26) and (3.28), in which n=3 gives

hsss�x� 
 sss�y�jvi, xi; vj, xji � hsssjvi, xi; vj, xji�x� 
 hsssjvj, xj; vi, xii�y� �
�

Tp�xÿ xp, bbb1�

� �vp 
 Tp�yÿ xp, bbb1� �vp�j�vp, xpj; vi, xi; vj, xj �dx�
� �
�Tp�xÿ xp, bbb1� �vp� 
 �Tq�yÿ xq, bbb1�

� �vq�j�vp, xpj; vi, xi; vj, xj � �
�
j�vq, xqj; vp, xp; vi, xi; vj, xj � ÿ j�vq, xqj; vi, xi; vj, xj �

�
dxq dxp:

�6:3�

Now let us obtain the relation for the correlation function by the use of an alternative method
proposed by Buryachenko and Kreher (1995) for an analysis of elastically inhomogeneous media. Then,
at x $ vi, and xi$xj,

sss�xjvi, x; vj, xj � � Ässsij�x� ÿQi�x, bbb1� � Tj�xÿ xj, bbb1� �vj, �6:4�

where Ässsij is a random e�ective ®eld, in which two considered inclusions, vi and vj, are located. It should
be mentioned that the right-hand-side of Eq. (6.4) does not depend on the value of the e�ective ®eld,
Ässsij�y� (y $ vj ), inside inclusion vj. Thanks to this fact, the closing assumption Eq. (7.5) from
Buryachenko and Kreher (1995) degenerates into (x $ vi, y $ vj )

h� Ässsij�x� ÿQi�x, bbb1�
�
 � Ässsij�y� ÿQj�y, bbb1��i � hsssii�x� 
 hsssij�y�: �6:5�
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Then, the 2-point second moment of stress inside the inclusions, vi and vj, is obtained by taking the
tensor product of ss(x|xi;xj) Eq. (6.4) into a related variable, ss(y|xj;xi) Eq. (6.4) in view of closure Eq.
(6.5)

hsss�x� 
 sss�y�i � �hsssii�x� � Tj�xÿ xj, bbb1�vj � 
 �hsssij�y� � Ti�yÿ xi, bbb1�vi �: �6:6�
This expression should be confronted with the previously obtained relation Eq. (6.3). Early in the

game, it should be recorded that the correlation function can result from the simple formula of the ®rst
order approximation

hsss�x� 
 sss�y�i � hsssii�x� 
 hsssij�y�: �6:7�
Eq. (6.7) does not take into account the binary interaction between inclusions x $ vi and y $ vj. This

interaction is considered by the second order approximation (6.6). The result of the third order
approximation (6.3) is determined by the action of an arbitrary third inclusion vp. The correction,

Dhsss�x� 
 sss�y�i � hsss�x� 
 sss�y�jvi, xi; vj, xji ÿ hsssjvi, xi; vj, xji�x� 
 hsssjvj, xj; vi, xii�y�, �6:8�
can be written, in view of only the principal part of Eq. (6.3), as

Dhsss�x� 
 sss�y�i �
�
�Tp�xÿ xp, bbb1� �vp� 
 Tp�yÿ xp, bbb1� �vpj�vp, xpj; vi, xi; vj, xj �dxp, �6:9�

under the considered ®xed inclusions, vi and vj.

7. Numerical results

As an example, we consider a Si3N4 composite with isotropic components L=(3k, 2m )03kN1+2mN2,
N1 0 dd 
 dd/3, N2 0 IÿN1 containing the identical SiC spherical inclusion. We will use the following
elastic constants and thermal expansion coe�cients, as usually found in the literature (see, e.g. Kreher
and Janssen, 1992), and displayed in Table 1.

The thermal strains have been calculated with the assumption that internal stresses do not relax by
creep of components below T0. For an assessment of stress, a temperature di�erence (TÿT0) of about
1000 K between room temperature and the stress-free state at the elevated temperature is assumed (bb0
aT(TÿT0), a

T=aTdij ).
For a low volume fraction of SiC, one may describe the composite as a Si3N4 matrix with SiC

particles embedded in it. The SiC particles are assumed to be spheres with radius a. Two alternative
radial functions of inclusion distribution will be examined:

g�xi ÿ xj � � j�vi, xij; vj, xj �=ni � H�rÿ 2a�, r � jxi ÿ xj �7:1�

Table 1

Thermoelastic constants

k (GPa) m (GPa) aT (10ÿ6 K)

Si3N4 236.4 121.9 3.4

SiC 208.3 169.5 4.4
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and (see Willis, 1978)

g�xi ÿ xj � � H�rÿ 2a�
(
1�

�
2� c

2�1ÿ c�2 ÿ 1

�
cos

�
pr
a

�
e2�2ÿr=a�

)
, �7:2�

where H denotes the Heaviside step function, r 0 |xiÿxj| is a distance between the nonintersecting
inclusions vi and vj and c is the volume fraction of SiC.

For the representation of numerical results in dimensionless form, we de®ne the normalizing
coe�cient t 0 ÿ3Qkbb10, where 3Qk equals the bulk component of the tensor Q=(3Qk, 2Qm ). The
physical meaning of t follows from Eq. (3.17), according to which, t equals the component of
hydrostatic stress inside a single isolated inclusion in an in®nite homogeneous matrix (at M(x)0const.);
for our speci®c composite, SiC±Si3N4, we have t=289 MPa and Poisson's ratio n=0.28. In order to
carry out the needed numerical estimates, we will use the expressions of the tensors, Qp, Tp (xÿxp), GG(n)
Eq. (5.13) ( p=1, 2,...), which are presented, e.g. in Buryachenko and Kreher (1995).

At ®rst, we will estimate the e�ect of the assumption of elastic homogeneity of the materials (M(x)0
M(0)). The results hss11i10c outlined in Fig. 1 are calculated by both the exact relation Eq. (3.8) (M(x)0
M(0)) and by the approximate MEFM by Buryachenko and Kreher (1995), with (M(x)$const). Fig. 2
shows the mean square deviation of stresses inside the inclusion, jDsss2

1j1111j0:5, as a function of the
standard deviation of inclusion concentration (Dc 2)0.5 0 [c(1ÿc )]0.5, which were calculated by the
perturbation method Eq. (3.22) under the assumption of nonhomogeneity (M(x) $ const.) and
homogeneity (M(x)0M(0)) of the elastic properties of the composite. From Figs. 1 and 2, we notice that
the error of the assumption of homogeneity of elastic properties of the ceramic is about the error caused
by ignoring the radial distribution function Eq. (7.2). Because of this, below we will consider only the
case M(x)0M(0).

Let us evaluate a perturbation dss1(x)0hss|v1, x1; v2, x2i(x)ÿhssi1(x), x=x1, caused by the inclusion v2
at the center of the inclusion v1; x1=(0, 0, 0), x2=(r, 0, 0). We will consider triple conditional
probability densities

j�vp, xpj; v1, x1; v2, x2� � n1g�xp ÿ x1�g�xp ÿ x2�H�jxp ÿ x1j ÿ 2a�H�jxp ÿ x2j ÿ 2a� �7:3�

Fig. 1. Normalized average stresses within the inclusions hs11i1/t calculated by the exact relation Eq. (3.17) under M(x)0M(0)

(solid line) and by the MEFM (under M(x)$const.) for the step correlation function Eq. (7.1) and the real one Eq. (7.2) (dotted

and dot±dashed lines, respectively).
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and binary ones (Eqs. (7.1) and (7.2)). The impossibility of the inclusion intersection is taken into
account by the Heaviside step function H. A neighboring order in the triple point distribution Eq. (3.26)
is constructed by the use of the binary probability density; a selection of more complicated distribution
functions will not be considered. Fig. 3 shows the curves which are calculated for c= 0, 0.1 and 0.4 by
the use of Eqs. (3.26) and (7.3) for the radial distribution functions, Eqs. (7.1) and (7.2). It is evident
from these curves that considering only the principal part in the action of the second inclusion, T2�x1ÿ
x2�bbb�2�1 �v2, leads to signi®cant errors under nondilute inclusion concentration. The non-monotonical
character of curves 3 and 4 near the point |x1ÿx2|=4a is explained by the occurance of the nonzero
probability of the location of some inclusion vp between ®xed inclusions v1 and v2, under r/a>4 only.

We come now to the estimation of the nonhomogeneity of stress ¯uctuations Dsss2
1�x� inside the

Fig. 2. Normalized stress ¯uctuation jDs21j1111j0:5=t as a function of (Dc 2)0.5 calculated for step correlation function Eq. (7.1) (dotted

lines) and real one Eq. (7.2) (solid lines) under the assumption of nonhomogeneity (M(x)$const.) and homogeneity (M(x)=const.)

of elastic properties.

Fig. 3. Normalized perturbation ds1|11(x) produced by the inclusion v2 into a center of the inclusion v1 for c = 0 (solid line), 0.1

(dotted line) and 0.4 (dot±dashed and dashed curves) as a function of the relative distance |x1ÿx2|/a. Dashed line is calculated for

the step correlation function Eq. (7.1), and dot±dashed line is obtained for real correlation function Eq. (7.2).
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inclusions. The curves in Fig. 4 were calculated by the use of Eqs. (4.7) and (4.8) with c=0.4 for radial
distribution functions, Eqs. (7.2) and (7.1), respectively; x=(r, 0, 0). The normalized components
Ds21j1111�x� and Ds21j3333�x� are displayed in Fig. 4 by solid and dashed curves, respectively. For the step
correlation function Eq. (7.1), the calculated curves are invariant with respect to the inclusion
concentration.

Let us estimate an in¯uence of the binary fractional inclusion composition on the inhomogeneity of
stress moments inside the inclusions; c1=c2=0.2 and a1=2a. Fig. 5 shows the normalized curves
jDsss2

1j1111�x�j0:5=t, which are calculated by Eqs. (4.7), (4.8) and (7.1) inside the smaller inclusions and the
larger one; x=(r, 0, 0). It is evident from the ®gure that stress ¯uctuations at the inclusion surfaces for
di�erent inclusion sizes agree very closely, but they di�er from one another by a factor of 1.5 in the

Fig. 4. Normalized stress ¯uctuations jDs21j1111 �x�j0:5=t (solid and dot±dashed lines) and |Ds1|3333(x)|
0.5/t (dot and dashed lines) both

for the real correlation function Eq. (7.2) (solid and dotted lines) and the step function Eq. (7.1) (dot±dashed and dashed lines) as

a function of the relative radius r/a.

Fig. 5. Normalized stress ¯uctuations jDs21j1111 �x�j0:5=t inside both the small (solid line) and large inclusion (dotted line), as a func-

tion of the relative radius r/a; x=(r, 0, 0).
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center of the inclusions, notwithstanding the fact that the average stresses inside the inclusions are
invariant with respect to their size.

We compare the values of average ¯uctuations inside the inclusions hDss2i1, which are obtained by the
di�erent methods using the step distribution function Eq. (7.1). The results for stress ¯uctuations
|hDss2i1|1/2/t0 c 1/2 shown in Fig. 6 are estimated by the use of the perturbation method Eq. (3.22) as
well as of the method of integral equations (Eqs. (4.7), (4.8) and (4.9)) and with due regard for only the
principal part (analogous to Eq. (4.7)) of the expansion Eq. (4.11) of the EFM. We notice that the
abandonment of hypothesis H1 in MEFM leads to important re®nements of the numerical results. In so
doing, the average stresses inside the inclusions hssii, calculated by three di�erent methods have the same
values.

Let us estimate the normalized correction, Dsssn NORM
1 �x�0r Eq. (5.12), of di�erent orders to the

Fig. 6. Normalized stress ¯uctuations inside the inclusions |hDs1111i1|0.5/t calculated by the use of the perturbation method Eq.

(3.22) (dotted line) as well as by the integral equation method (Eqs. (4.7), (4.8) and (4.9)) with consideration of the H1 hypothesis

(dot±dashed line) and without one (solid line).

Fig. 7. The ®rst components of n-order normalized correction Dsssn NORM
1 �x�=3Qk to the Gaussian approximation hssG(
ssG)n ÿ 1i(x):

n=2 (solid line), n=3 (dot±dashed line), n=4 (dotted line), as a function of the relative radius r/a; x=(r, 0, 0).
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Gaussian approximation of the real stochastic stress distribution. The curves, Dsssn NORM
1 �x�0r, in Fig. 7

were calculated under n = 2, 3, 4 and the radial distribution function Eq. (7.1) by the use of Eqs. (4.7)
and (5.10) and the notation Eq. (5.12); we have considered only the components Dsn NORM

1ji1,... , in�x�
(i1=...=in=1) as the functions of the coordinate x0(r, 0, 0).

Now we evaluate the accuracy of stress ¯uctuation in the components �Dsss2 Eq. (4.18) by use of both
the the three-point approximation (4.16) and the two-point approximation (Eqs. (4.7) and (4.15)); it
turns out that the contribution from the stress ¯uctuation inside the components, hDs21111ii (i= 0, 1), is
less than the exact relation for stress ¯uctuations in the whole composite, Dss2 0 hss 
 ssiÿhssi 
 hssi
(de®ned by Ortiz and Molinari, 1988), by a factor 5. In Fig. 8, the curves of the two-point
approximations were calculated by using the principal part of the expansion for hDss2i1 (Eqs. (4.7) and
(4.9)) and hDss2i0 Eq. (4.15) (which are proportional to c under c 4 0) for the radial distribution
functions (Eqs. (7.2) and (7.1)), respectively. A step function,

j�vp, xpj; v0, x0� � H�jxÿ x0j ÿ a�n1, �7:4�

has been applied for calculation of these curves. For comparison, the exact result described by Eqs.
(3.16) and (3.20), as well as two curves of three-point approximations calculated by Eq. (4.16), are also
plotted in the same ®gure. One uses triple conditional probability densities,

j�vq, xqj; vp, xp; vi, xi �

� nqg�xq ÿ xi �g�xp ÿ xi �H�jxq ÿ xij ÿ 2a� �H�jxp ÿ xij ÿ 2a�H�jxp ÿ xqj ÿ 2a�
�7:5�

and

j�vq, xqj; vp, xp; v0, x0� � nqH�jxq ÿ x0j ÿ a�H�jxp ÿ xij ÿ a�, �7:6�

and the binary probability density (Eqs. (7.1), (7.2) and (7.4)). Curves of the three-point approximation
are computed with the radial distribution functions (Eqs. (7.2) and (7.1)) as well. As may be seen from
Fig. 8, the accuracy of the estimations may be substantially extended by taking into account a threefold
interaction of the inclusions. The error of the calculation by the exact formula (4.16) is dictated by the

Fig. 8. Normalized stress ¯uctuations inside the components jD �s21111j0:5=t calculated for both the step correlation function Eq. (7.1)

(dashed lines) and the real one Eq. (7.2) (solid lines), which are obtained under the two-point and three-point approximations. The

exact solution is plotted by the dotted line.
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inaccuracy of the determination of di�erent conditional probability densities (Eqs. (7.1), (7.2), (7.3),
(7.4), (7.5) and (7.6)). The curves presented are representative of averaging ¯uctuations of the stresses in
the composite. The degree of dissimilarity between the di�erent models should be expected from the
calculation of stress ¯uctuations inside the inclusions. Really, the results �hDs21111i1�0:50c, outlying Fig. 9,
are calculated in an exact three-point relation Eq. (4.5) and an approximate two-point formula (4.7)
when used with the correlation functions (Eqs. (7.3), (7.4), (7.5) and (7.6)), with the radial distribution
functions, Eq. (7.2) (solid lines) and Eq. (7.1) (dashed lines). From this ®gure, we notice that the
approximate formula (4.7) under the binary-step function Eq. (7.1) can be used for the estimation of
stress ¯uctuations hDss2ii with su�cient accuracy.

The results for Dhs11(x)
 s11(y)i and Dhs33(x)
 s33(y)i Eq. (6.9) are plotted in Fig. 10 after using the
binary Eq. (7.1) and triple conditional probability densities Eq. (7.3) with x=(a, 0, 0) $vi and y=(rÿa,

Fig. 9. Normalized stress ¯uctuations inside the inclusions |hDs1111i1|0.5/t calculated by the use of two-point (solid and dotted lines)

and three-point (dot±dashed and dashed lines) approximations for both the step correlation function Eq. (7.1) (dotted and dashed

lines) and the real one Eq. (7.2) (solid and dashed lines).

Fig. 10. Normed correlation functions |Dhs11(x1)
 s11(x2)i|0.5/t (dashed line) and |Dhs33(x1)
 s33(x2)i|0.5/t (solid line) as a function

of the relative distance |xÿy|/a between the inclusions.

V.A. Buryachenko / International Journal of Solids and Structures 37 (2000) 4185±42104206



0, 0) $v2; the centers of ®xed inclusions, v1 and v2, are located at the points x1=(0, 0, 0) and x2=(r, 0,
0). The non-monotonic character of the calculated curves are attributable to the fact that the probability
of spacing of the third inclusion, vp, between ®xed inclusions, v1 and v2 under r/a>4, does not vanish.

It should be mentioned that all normalized numerical results (Figs. 1±10) are obtained for n=0.28,
depend only on Poisson's ratio, and are invariant with respect to other thermoelastic properties of the
components. But for practically important values, 0.2 < n <0.35, the calculated nonhomogeneous stress
¯uctuations along the radius of the inclusions (Figs. 4, 5 and 7) vary in magnitude by, at most, 20 per
cent; analogous deviation for average stress ¯uctuation over each component equals 1 per cent.
Therefore, the normalized results noted may be used with some caution for analysis of the su�ciently
wide class of elastically homogeneous composites with the microtopology studied here.

8. Conclusion

Needless to say, the real purpose of the author, beyond the immediate scope of the considered
problem, only seems to be theoretical. Stress ¯uctuations in the components of random structure
composites represent a measure of inhomogeneity of stress ®elds in the components. The fundamental
roles of such inhomogeneities described by the stress ¯uctuations are discussed in detail by Buryachenko
(1996), Ponte CastanÄ eda (1997), and Suquet (1997) for a wide class of nonlinear problems of
micromechanics, such as nonlinear elasticity, viscosity and creeping, elastoplastisity, and strength. The
principal advantages of the proposed method of integral representations for stress ¯uctuations (Eqs.
(4.5), (4.15) and (5.13)), in comparison with the perturbation method and some others, were shown by
Buryachenko and Rammerstorfer (1997) for the purely isothermal elastic case (bb=0) in a composite
with uncoated inclusions. For the thermoelastic case, additional advantages as well as other interesting
aspects when employing the proposed method should be mentioned (see Buryachenko and
Rammerstorfer, 1998a).

For elastoplastic analyses based on estimations of some nonlinear functions of local stresses, e.g. the
yield condition, taking stress inhomeneities in the components into account, it is very popular to use
secant and tangent moduli concepts (see the references in the indicated papers). This way, the nonlinear
problem at each solution increment reduces to the averaging linear elastic problem with bb00. The use
of the secant modulus concept creates the known complications since, generally, the local stress state is
not monotonical and proportional, even with monotonical and proportional external loading. The
tangent moduli concept leads to the necessity of also considering the matrix material as being
anisotropic at each solution step. This would not lead to any problem in the framework of the `quasi-
crystalline' approximation by Lax (1951) (see also Buryachenko and Rammerstorfer, 1997), but it leads
to some computing di�culties at the realization of the MEFM for which advantages in comparison with
some popular methods were justi®ed (see, for references, Buryachenko, 1996; Buryachenko and
Rammerstorfer, 1997). However, the integral representations for stress ¯uctuations (Eqs. 4.5 and 4.15)
permit the use of the incremental method with ®xed elastic properties of the components and with
accumulating plastic strains (bb(i ) $ const.). This method was presented by Buryachenko and
Rammerstorfer (1996a) (see also Buryachenko, 1999) for elastically homogeneous materials with a
thermal mismatch of the components. The analysis of the elastic mismatch will be pursued in a
forthcoming work of the author. Another improvement is connected with the abandonment of the
assumption of homogeneity of plastic strains in the matrix. In so doing, the concentration of plastic
strains in the vicinity of inclusions plays the role of a `coating', exhibiting an inhomogeneous
transformation ®eld along the inclusion surfaces. This model was realized by Buryachenko et al. (1997)
in the framework of the mean ®eld method by Dvorak (1993), and can be generalized with regard to
stress ¯uctuations in the components as found from Eqs. (4.5) and (4.15).
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Moreover the method of integral equations proposed also has qualitative bene®ts following
immediately from the consideration of multiparticle interactions. From such considerations, it can be
concluded that the ®nal relations for statistical moments of stresses (Eqs. (3.7), (4.5) and (4.15)) depend
explicitly not only on the local concentration of the inclusions, but also on at least binary correlation
functions of the inclusions. Therefore, for statistically inhomogeneous composites (the so-called `graded'
materials), the local statistical moments of stresses in the components are nonlocal functions of the
inclusion concentration. In the framework of e�ective ®eld hypothesis (see for details, e.g. Buryachenko
and Kreher, 1995), this nonlocal e�ect was shown by Buryachenko and Rammerstorfer (1998b, 1999c)
(the case, M, bb$const) under estimation of average stresses in the inclusions arranged in a ®nite cloud
in the in®nite matrix. For the case M0const., bb$const., it was exactly determined that the conditional
average inside the inclusions is changed by over 25 per cent in the boundary layer of the cloud. Similar
nonlocal e�ects are expected under the estimation of second moment of stresses by the use of Eqs. (4.5)
and (4.15). However, more detailed considerations of these e�ects are beyond the scope of current
paper.

Finally, it should be particularly emphasized that the representations for statistical moments of
stresses (Eqs. (3.7), (3.26), (4.5), (4.15) and (5.6)) obtained are new and exact. No restrictions are
imposed on the shape and microtopology of inclusions (including coated structure) as well as on the
inhomogeneity of the stress state in the inclusions. For some additional assumptions in the concrete
examples, it was shown that the second moment of stresses inside inclusions are essentially
inhomogeneous functions and changed by a factor 2 or more along the inclusion radius (see Fig. 4).
Moreover, even under the evaluation of average statistical moments of stresses inside the constituents,
the method proposed makes it possible to improve the estimation by 34 per cent (see Fig. 6) over other
method by Buryachenko and Rammerstorfer (1997, 1998a, 1999b), based on hypothesis H1 Eq. (4.10).
Thus, the method of integral equations proposed enables one to discover the new e�ects and promises
large bene®ts in analyses of a wide class of nonlinear problems for composite materials such as
nonlinear elasticity, nonlinear viscosity and creeping, elastoplasticity, strength and fracture.
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Appendix A. Some relations for the Gaussian distribution

It is known that for Gaussian distribution of N-dimensional vector e � �e1, . . . ,e6� 2 RN6 (N6=6), the
probability density has the form

p�e1, . . . , eN� � 1���������������������������
�2pN�det�K e�

p exp

 
ÿ 1

2

XN6

k�1

XN6

l�1
�ek ÿ heki�

ÿ
K e

kl

�ÿ1�el ÿ heil�
!
, �A1�

where K e
kl � h�ekÿ heki��el ÿ heil�i is called the covariance matrix and det(Ke ) is the determinant of the

matrix K e
kl: Then the higher correlations vanish and the moment of third, forth,... orders can be

expressed by heki, De2kl (k, l, m, n=1,..., N6)

hekelemi � hekihelihemi � heikDe2lm � heliDe2km � hemiDe2kl,
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hekelemeni � hekihelihemiheni � De2klDe
2
mn � DekmDe2ln � De2knDe

2
lm � hekiheliDe2mn � hekihemiDe2ln

� hemiheniDe2kl � heliheniDe2km � helihemiDe2kn: �A2�

In particular one obtains he3ki � heki3�3hekiDe2kk and he4ki � heki4�3�De2kk�2�6heki2De2kk:
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